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The modelling of small-amplitude pressure waves in dilute single- or multi-component 
fogs by means of averaged equations is considered. The problem is cast in a singular- 
perturbation framework in which the suspended droplets are the singularities. This 
point of view simplifies the local problem in the vicinity of the droplets. Matching 
in the overlap region provides the coupling with the averaged fields. Among the 
advantages of the method is the fact that the leading-order effects are clearly identified. 
In particular it is shown that, for low-amplitude waves and far below the fluid's critical 
point, phase change effects only start to be important when the vapour mean free 
path becomes comparable with the drop radius and dominate for yet smaller drops. 

The present method for the derivation of effective equations appears to be of 
general applicability to a variety of multi-phase situations and is illustrated in detail. 

1. Introduction 
The propagation of pressure waves in a suspension of small liquid droplets in a 

gas or gas-vapour mixture is a complex process of obvious interest in science and 
technology. Like so many other multi-phase processes, its theoretical description 
is largely based on equations that have been postulated on the basis of physical 
arguments rather than derived in a systematic manner. It is the purpose of the 
present contribution to provide the derivation of a continuum model applicable to 
the case of linear waves in the dilute case. 

Superficially, the averaged equations that we derive resemble many others available 
in the literature. However our model is not heuristic, but has a strong mathematical 
basis. Secondly, our approach clarifies in a systematic way what are the important 
effects to leading order, a task that is not within easy reach of heuristic arguments. We 
thus not only gain valuable insight into the controlling physical processes, but also 
derive the simplest model which is consistent to leading order in the droplet volume 
fraction. In particular we show that, for weak waves and below the critical point of 
the fluid, phase-change effects start being important only when the Knudsen number 
K n  is of order 1, i.e. when the drop radius becomes comparable with the mean free 
path. For bigger drops energy exchanges are too weak to give rise to appreciable 
evaporation and condensation. The range of K n  - 1 is of particular interest because 
the usual continuum laws break down. The experimental study of linear waves offers 
therefore a tool to investigate the physical nature of processes in this regime. In our 
theoretical work we have to rely on semi-empirical information (Gyarmathy 1982) to 
find explicit expressions for the inter-phase coupling terms, i.e. the drop evaporation 
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rate, drag, and heat transfer. The explicit forms that we derive for these quantities 
are significant results of the present work. 

The third point of interest of this study is a technical one. We further develop 
Foldy’s (1945) technique as modified by Caflisch et al. (1985) for the study of the 
propagation of pressure waves in bubbly liquids. Since this technique is simple, 
powerful, and of general applicability, it is useful to set it out systematically in 
general terms, which we do in $4. The basic idea is to consider the inhomogeneities 
(in the present case, the droplets) as providing a singular perturbation to the field 
equations for the gas. The problem in the droplets’ near-field - the inner region - can 
then be solved subject to matching to the averaged fields in the overlap domain. The 
advantage is a clear decoupling between the complexity of the near-field behaviour 
and the dominant effects at a distance from the drops. Although it turns out that, 
for a fog with strong phase-change effects, due to the large value of the latent 
heat, the problem that we can handle with this technique is essentially linear, in 
other situations nonlinear effects originating near the inhomogeneities appear in the 
averaged equations as in the case treated by Caflisch et al. 

The literature on the propagation of pressure waves in fogs is quite extensive and 
we make no attempt to provide an exhaustive list of references. A separate (and vast) 
literature is also available on pressure waves in suspensions and emulsions, and on 
the flow of particle-laden mixtures. The most transparent physical justification of the 
mathematical models used in the literature on fogs and wet vapours is perhaps that 
provided by Marble (1969) and Marble & Wooten (1970). Wei & Wu (1981) have 
reviewed the literature up to about 1980. A synthesis of Soviet work in this area 
has been provided by Gumerov, Ivandaev & Nigmatulin (1988). Young (1982, 1984) 
studied the flow of wet steam in turbines and later, with Guha, the structure of shock 
waves propagating in vapour-droplet mixtures (Young & Guha 1991; Guha 1992, 
1994). Finite Knudsen number effects for sound absorption in fogs have been studied 
by Fukuta & Walter (1970), Jaeschke, Heller & Meier (1975), and Wei, Tian & Lu 
(1987). A complete list of references that traces the history of the problem from the 
19th century can easily be constructed from these works. 

2. Problem statement 

refer to as the vapour. We use the standard conservation laws for mass 
We consider a gas-vapour mixture, satisfying the perfect-gas laws, which we simply 

momentum 
du 

P- + v p  - pv2u = -qpV(V. u), dt 
and energy 

pC, - -kV  d T  2 T - - z  :e= - .  dP 
dt dt (2.3) 

Here p is the density, p the pressure, T the temperature, u the velocity, p the 
shear viscosity, qp the bulk, or second, viscosity, C, the specific heat, k the thermal 
conductivity, z the viscous stress tensor, and e the rate of deformation tensor; d/dt 
denotes the convective derivative. Compressibility of the liquid phase is neglected 
and the appropriate equations can therefore be obtained from the previous ones by 
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simply setting all the right-hand sides to zero. The subscript L will be used for the 
liquid quantities, while no subscript is attached to the vapour ones. 

In the presence of an incondensible gas, (2.1) to (2.3) remain valid except that p, 
C,, and K denote the total mixture density, specific heat, and conductivity, and u 
the centre-of-mass velocity. (A nonlinear correction to the energy equation will not 
contribute in the following.) One also needs the diffusion equation 

dc 
p -  =V.(pBVc) ,  

dt 
where 9 is the diffusivity of mass and c the mass fraction of the vapour phase. 
Thermal and pressure diffusion have been neglected. The treatment of diffusion 
effects is deferred until $7. Until then, we shall consider the pure-vapour case only. 

As mentioned before, in the problem studied here the mean free path of the vapour 
molecules is not necessarily small compared with the droplet radius. For this reason 
some of the previous equations need to be amended in the neighbourhood of the 
drops. These issues are dealt with in $5. 

At the liquid-vapour interfaces conservation of mass requires that 

p ( u -  w)-n = pL(uL - w) a n  = h, (2.5) 

where n is the unit normal directed out of the drop and w is the velocity of the 
interface. The mass flux per unit area m as defined by this relation is positive for 
evaporation. The incondensible gas will be assumed to be insoluble in the liquid and 
therefore m is entirely due to the vapour flow in the multi-component case. Explicit 
expressions for the normal and tangential momentum boundary conditions are not 
required in the following. 

Conservation of energy is expressed by 

- ( ~ L V T L  + q )  * n = Lm, (2.6) 

where L is the enthalpy of vaporization and q the heat flux on the vapour side. 
Owing to the finiteness of the Knudsen number the relation between q and T may 
be expected to differ from Fourier's law applicable in the bulk of the vapour. 

In the presence of evaporation and heat transfer the temperature field undergoes a 
jump in traversing the interface from the vapour to the liquid (Pa0 1971a,b; Kogan 
1973; Gyarmathy 1982; Labuntsov & Kryukov 1979; Cercignani 1988; Onishi 1986; 
Aoki, Sone & Yameda 1990; Sugimoto & Sone 1992). Kinetic theory gives a relation 
of the form (see e.g. Labuntsov & Kryukov 1979) 

where PI, 8 2  are numerical coefficients of order 1, T, is the surface temperature, 
Tex is the vapour temperature extrapolated to the surface, pE( T,) and pE( T,) are the 
equilibrium saturation density and pressure, and 

with & the universal gas constant and Mu the vapour molecular weight. The first 
term in the right-hand side of (2.7) is proportional to the Mach number of the phase 
change process at the interface. As for the second term, it is easy to show that it is of 
the order of the temperature change over a mean free path divided by the absolute 
temperature. Both effects can be expected to be small in the present application in 
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which the equations are linearized and will be neglected. Hence, at the interface, we 
assume that 

T = TL = Ts. 
One further relation expressing the vapour conditions at the interface is necessary. 

This is a rather complex and unsettled issue at present (see e.g. Aoki & Cercignani, 
1983; Ytrehus, 1983; Koffman, Plesset & Lees, 1984; Cercignani, Fiszdon & Frezzotti 
1985; Hermans & Beenakker 1986; Onishi 1986; Shankar & Deshpande 1990). To 
explore the sensitivity of the results to this aspect of the model we shall make use 
of two different conditions, namely saturation, and a relation of the Hertz-Knudsen 
form 

(2.9) 

(2.10) 

Here ct would equal the accommodation coefficient a, for the original Hertz-Knudsen 
relation. Later studies suggest that setting a = 2a,/(2 - a,) may be more accurate 
(see e.g. Kogan 1973). 

In what follows we shall treat in detail the case of a fog consisting only of the liquid 
and its vapour. The presence of an incondensible gas only introduces slight differences 
and is considered in 57. We shall also assume all drops to have equal radius. As noted 
at the end of §4, the generalization to a size distribution is straightforward. 

3. Scaling and linearization 
The method to be used in the derivation of averaged equations is essentially 

a method of singular perturbations and requires separate scaling analyses at the 
macroscopic, or average, level and at the microscopic, or local, level (i.e. in the 
neighbourhood of each droplet). The idea is sketched in figure 1. 

3.1. Macroscopic scaling 
From the macroscopic point of view, the passage of a pressure wave through the fog 
is characterized by a typical wavelength 1 and frequency o in terms of which we 
non-dimensionalize lengths and times, 

x = AX*, t. = 0 t. (3.1) 

As will be clear from the following (and as can be verified a posteriori from the 
results), we consider the limit in which the presence of the disperse phase does not 
change the orders of magnitude associated with the wave propagation process in the 
pure vapour. Hence the phase speed C of the wave can be estimated to be of the 
order of (po/p~)l’~,  where the subscript 0 denotes equilibrium values, and we take 
lo = C. Let 

(3.2) 

denote the non-dimensional amplitude of the perturbations of the vapour velocity and 
pressure due to the passage of the wave. From the adiabatic pressuretemperature 
and pressure-density relations, the latter is also a measure of the non-dimensional 
temperature and density disturbances and we therefore set 
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FIGURE 1. Schematic illustration of the present singular perturbation approach. On the macroscopic 
length scale 1 of the wave the droplet size is negligible. Upon ‘zooming in’ to the local scale the 
drop radius a becomes finite. The matching of the droplet (inner) and macroscopic (outer) fields 
is performed at the intermediate scale u that is the radius of the ‘guard sphere’ surrounding each 
drop. 

Upon substitution into the vapour momentum equation we find 

du. 17 PO 
dt, M poC2 

(1  + n p * )  - + --V.P. = f [v?u* + qV*(V* u*)] , 

where 

(3-4) 

is the inverse of the acoustic Reynolds number associated with the wave. This 
parameter is very small up to frequencies in the tens of MHz range so that it is the 
two terms in the left-hand side of (3.4) that must balance, which requires that Il - M. 
For simplicity, and without loss of generality, we take 

Po -- 
poc2 - l 3  

Il = M ,  

and we explicitly limit the analysis to weak (linear) waves in the macroscopic sense, 
M << 1. As is known from the corresponding problem for bubbly liquids (Caflisch 
et al. 1985), linearization at the macroscopic level does not automatically imply 
linearization at the microscopic (droplet) level. 

With these specifications, the momentum equation (3.4) then becomes 

au, 
- + v*p* = E [vlu. + qV*(V. ’ ..)I . 
at. 

After similar considerations the vapour continuity equation becomes 

(3.7) 

dP* - + v * . u *  = o ,  
at. 
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and the energy equation (2.3) 
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(3.9) 

where y is the ratio of the specific heats of the vapour and Pr is the Prandtl number, 
usually of order 1 for gases. The contribution of viscous dissipation is multiplied by 
ME. and is therefore negligible. 

3.2. Microscopic scaling 
While the characteristic time at the microscopic level is the same as that at the 
macroscopic level, the characteristic length is the droplet radius a and we set therefore 

x = a f ,  or xt = h i ,  (3.10) 

where 
(3.11) 

a 
6 = - < < 1  

I 
is the dimensionless drop radius. The velocity scale of the flow in the neighbourhood 
of a drop is of the same order as in the outer region so that it is appropriate to use 
the reference velocity Au for the microscopic region as well. This choice could be 
inappropriate if the velocity scale Aupc due to the phase change process were much 
larger than Au. The estimate that is provided below in connection with (3.16) proves 
however that, owing to the magnitude of the latent heat away from the critical point, 
at most Aupc - Au. It is because of this circumstance that, unlike the case of a bubbly 
liquid where the radial velocity of the bubbles can be large even in the presence of 
a relatively weak wave on the macroscopic scale, here the microscopic momentum 
equation for the local problem will also be found to be linear when phase change 
effects are significant. 

From the continuity equation (2.1), using (3.6) and neglecting terms of second and 
higher order in M ,  we find 

from which, since 6 << 1, 
A 

v . u *  = o  

(3.12) 

(3.13) 
to leading order. 

Before scaling the other equations, let us consider the conditions of conservation 
of mass and energy at the interface. In the first one, (2.51, we shall assume p o / p ~  to 
be small so that the velocity of the interface w can be taken to be essentially equal to 
uL. Furthermore, as will be argued shortly, it is a good approximation to neglect the 
flow in the droplet, so that UL can be identified with the drop translational velocity u. 
Upon combining (2.5) and (2.6) we then have 

(3.14) (u. - u , )  * IZ = -A 

where 

(3.15) 

The parameter A, given by 

(3.16) 
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may be interpreted as the ratio between the phase change velocity Aupc mentioned 
before and the particle velocity in the wave Au. The fraction C,To/L (sometimes 
called the Jacob number) is typically of order 1 or smaller away from the critical 
point owing to the large value of the latent heat. 

For phase change effects to be significant, A must be 0(1) or larger, which implies 
O(6) = O(r)  or O(6) < O(E).  The Reynolds number ReD based on the local vapour 
velocity is 

2apoAu 6 
ReD = ~ = 2 M -  

P E 
(3.17) 

and is therefore small in either case, O ( M )  or smaller. Viscosity plays then a strong 
role in the flow in the neighborhood of the drops so that the appropriate scale for 
the pressure gradient is 

AU 
v p  = p- v p .  

a2 
By using this scaling the vapour momentum equation (2.2) becomes 

(3 .18)  

(3.19) 

Since M << 1, in both cases O(6) = O(r )  and O(6) < O(E) ,  the dominant terms give 
the Stokes equation. We use the relation (3.18) rewritten in the form 

(3.20) 

to write this equation as 

where the droplet Reynolds 

9 p *  - - v u .  1 “ 2  = 0,  (3.21) 
Re 

6 

E P 

number based on the wave velocity is defined by 

(3.22) Re = - = 

When O(6) = O(E), Re - 1, which implies that the penetration distance of viscous 
effects over a wave period, of the order of ( p / p ~ w ) ’ / * ,  is large compared with the 

drop radius (more precisely, a/  ( p / p w )  1’2 - ( 1 3 ) ” ~ ) .  
The Knudsen number K n  based on the particle radius can be defined by (Gyarmathy 

1982) 

(3.23) 

and is therefore of order 1 if O(6)  = O(r),  while it is large if O(6) < O(E). The latter 
case corresponds therefore to nearly free-molecular flow and cannot be analysed on 
the basis of the present equations. It will not be considered further. On the other hand, 
Kn - 1 implies that the drop size is comparable to the mean free path so that the 
prevailing flow regime is transitional between the continuum and the free-molecular 
limits. As a consequence, a special treatment of the local problem is necessary, as will 
be seen in 55. 

Another distinguished limit of (3.19) is found for O(e)  = O(S2),  O ( M )  < O(6). In 
this case one finds the linearized Navier-Stokes equation 

au. 6 A 

~ + -vp = -v2u.. 
at ,  62 6 2  

(3.24) 
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Now Kn = O ( 6 )  so that the standard continuum relations apply. However A = O(6)  
also, so that phase change effects are negligible. The fog behaves therefore no 
differently than a dusty gas. The interphase momentum interaction acquires the Basset 
memory term. A third case to consider would be O(e) = O(S2), O ( M )  = 0(6), but it is 
clear from (3.17) that then ReD = 0(1) rather than small. The condition O ( M )  = O(6)  
signifies that the particle displacement in the acoustic wave is comparable with the 
drop radius and, as a consequence, the local problem does not simplify in any way 
and the full Navier-Stokes equation must be solved. Phase change however remains 
unimportant. 

By using the local scaling, and in particular (3.18) for the pressure term, the energy 
equation (2.3) becomes 

= $ (EG2T* 1 + e M z .  : 7.) , (3.25) 

27 

where 

In the limit O(6)  = O(E), M << 1 that we consider we then find just 

z. = V.U. + (V*U*)'. (3.26) 

t 2 T .  = 0.  (3.27) 

This result can be understood in physical terms by noting that, in the conditions of 
this scaling, the characteristic time for the variation of the vapour enthalpy is the wave 
period o-l, which is much longer than the time, Prpoa2/p = PrReG/w, necessary 
for the propagation of temperature disturbances by conduction. The droplets are 
therefore surrounded by a quasi-steady temperature environment so that conduction 
becomes the limiting thermal process. 

The local scaling analysis discussed here has focused on the situation where phase 
change processes are important and has shown that, below the critical temperature 
where the latent heat is large compared with the sensible heat, this only happens in 
regimes where the standard continuum theory is not applicable. Conversely, when the 
latter holds, the coupling between the phases is dominated by momentum - rather 
than mass - exchange and is therefore uninteresting for the purposes of this work. 

The local variables (3.10) are also the appropriate ones for the liquid phase. We 
shall take the liquid to be quiescent except for the solid-body motion due to the 
translation of the drops. This approximation amounts to neglecting the gas viscous 
drag on the liquid at the interface, surface tension variations, inertia, and other 
smaller effects. The large viscosity of the liquid, the strong effect of surface tension 
on small drops, and the relatively weak phase change rates furnish a basis for these 
simplifications. As a consequence of this condition of mechanical quasi-equilibrium, 
the drops remain very nearly spherical. The only equation to be considered in the 
liquid is thus the energy equation. Since the droplets are small, and for simplicity, we 
assume that the steady energy equation is a good approximation in the liquid, 

(3.28) 

Unsteady effects could be easily accounted for, if at the price of introducing a memory 
term in the effective equations. 

Because of the linearization of the problem, the saturation condition can be 

^ 2  V TL. = 0. 
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expressed explicitly from the Clausius-Clapeyron equation in the form 

p. = HT,., 

where 
L H = -  
9" To * 

If the Hertz-Knudsen relation (2.10) is used, one finds 

(3.29) 

(3.30) 

p* = H T,. - H' (u, - v,) * IZ, (3.31) 

where T,, is the (dimensionless) surface temperature, H is as before, and H' is given 
by 

(3.32) 

3.3. Final form of the Jield equations 
We can now write the final form of the equations to be considered. We obtain 
this form by using the perfect-gas equation of state to eliminate the density and by 
including only the terms that are important in the macroscopic or in the microscopic 
scaling. It is convenient to represent the velocity field in terms of a scalar and a vector 
potential 

with V, - A .  = 0. The vapour energy equation is 
u* = v*4* + v. x A*, (3.33) 

€ 2  aT, y - 1 ape 
P r  at. at. ' 
-V,T, = - - -- 

while, upon elimination of 8 T./at,, the continuity equation becomes 

Upon taking the divergence of the momentum equation we find 

v i ( g + p . )  =eVV:z,. 

(3.34) 

(3.35) 

(3.36) 

Finally, by taking the curl of the momentum equation, we have the equation satisfied 
by the dimensionless vorticity W .  = V. x u, = -V?A,, 

aW. evlo. = - 
at. 

(3.37) 

4. Outline of the method 
We now give an outline of the approach that will be followed to obtain the averaged 

equations and derive a fundamental result that will be used repeatedly in $6. The 
method will be presented in a heuristic manner. A better quantitative justification is 
given by Caflisch et al. (1985), Caflisch & Rubinstein (1986), and Rubinstein (1986). 

We consider a suspension containing N droplets in an otherwise unbounded vapour- 
filled space. The point of view that we take is that the droplets introduce singular 
perturbations in a flow field that is otherwise governed by the standard linearized 
equations for a compressible fluid. The small parameter is 6 defined by (3.11) and 
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the mathematical limit that we consider is 6 -+ 0. The matching of the inner field 
dominated by each drop and the outer field (or, in other words, the overlap domain 
of the inner and outer fields) occurs at a distance 0 from the drop such that 

6 < 0 < < 1 .  (4.1) 

It will be shown in 96 that, in order for the droplets to have a non-vanishing effect 
in the limit 6 -+ 0, one must consider simultaneously the limit N --+ co in such a way 
that N6* remains of order 1. The total volume occupied by the droplets, of order 
Na3 - 0(1)6, is therefore seen to vanish. In the case studied by Caflisch et al. N 6  
remained constant in the limit so that the volume fraction was of order 6*, whereas 
it is larger, 0(6), here. That problem is thus more singular than the present one in 
the sense that fewer inhomogeneities are sufficient to have the same 0(1) effect on 
the flow. 

At some given instant we surround each droplet by a sphere of radius 0 concentric 
with it (figure 1). Since the surface of this sphere must be in the matching region, 
6 / 0  + 0 as 6 + 0. Furthermore, for reasons that will become clear shortly, we 
require the total volume occupied by these ‘guard spheres’ to tend to zero in the limit 
6 -+ 0 so that 

0 3  0 3  
N o 3  = N d 2  (w) - 0(1) (a2/1) +O. 

These conditions will evidently be satisfied if and only if 

CT = 0 ( d p ) ,  with 2/3 < p < 1 ,  

which gives a formal definition of the overlap domain. 
If the volume of the guard spheres tends to zero in the limit, it is reasonable to 

assume that the probability of two of them overlapping is negligible. A formal proof 
of this fact is available for the case studied by Caflisch et al. (1985), for which N N 1/6 
(see e.g. Caflisch & Rubinstein 1986), but not here. However, this assumption may 
be made plausible by noting that the mean inter-particle distance k‘ is of the order 
of the number density to the power -1/3, so that / - 62/3 from which o// -P 0 by 
(4.3). This circumstance implies that, in the limit, the particles are well separated on 
the scale 0. 

All the vapour-phase equations of the previous section have a structure of the type 

v2!P = s .  (4.4) 

By applying Green’s identity to the domain V external to the collection of guard 
spheres we may write 

where n is the unit normal directed out of the surface Sa of each guard sphere and 
the time dependence is understood. Here the index 01 labels the particles and G is the 
free-space Green’s function solution of 

V2G = 6(3)(x - x’). (4-6) 

G is symmetric, G(x - x’) = G(x’ - x), and the spatial scale for its variation in the 
neighbourhood of either x or x’ is Jx - x’J. For any given configuration of drops, the 
probability that a point x chosen at random is inside, or close to, a guard sphere is 
of the order of the volume fraction of the guard spheres and is therefore vanishingly 
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small in the limit. Hence, except for a set of measure zero, any point x will be 'far' 
(on the scale of 6) from all the droplets, including the closest ones, as 6 -+ 0. This 
remark implies that if, for x' on the guard sphere surrounding the ath droplet, we 
define a new variable y by 

x' = xa + y ,  (4.7) 

(4-8) 

for all a, and almost all x, 

Iyl = 0 << I X - Y l .  

In the surface integrals appearing in (4.5) we can therefore use the approximations 

} (4.9) 
G(x - x') = G(x - x") - y VG(X - x") + O(02),  

n V'G(x - x') = -n VG(x - xa) + 0, n) : VVG(x - 9) + O(02),  

to find 

N 

G s ~ ~ x '  + C [GI(')(Y,xa) 
a=l 

- VG . [Z(2)( Y ,  x') - Z(3)( Y , xu) ]  - (VVG) : Z(4)( Y ,  x")] .(4.10) 

Here the argument of all the G is x - xN and we have introduced the definitions 

I(')( Y ,  xu)  = I ,  n V, Y (x' + y )  dSK , (4.11) 

Z(2)( Y ,  xa) = 

Z(3)( Y ,  x') = 

y (n  Vy)Y (xa + y )  dSa , 

n Y (x' + y )  dS" , 
J,. 
Ji, 

Z(4)( Y ,  x a )  = la y nY (xa + y )  dS" . 

(4.12) 

(4.13) 

(4.14) 

The key point to note in connection with these integrals is that, since they are taken 
over a surface in the inner-outer matching region, they can be calculated by using 
the inner solution for Y .  It is this circumstance that enables us to obtain explicit 
expressions. It will be seen below that, for the cases we consider, the local fields are 
the sum of a constant and a part decaying as some power of the distance from the 
drops' centres. With this structure, Z(2) and have the same order of magnitude, 
while is O(l/o) larger. This will therefore be the dominant term, unless it happens 
to vanish. The last integral Z(4) is instead O(o) smaller, and therefore never significant. 
Accordingly, we shall drop it henceforth. Further terms in the expansions (4.9) would 
give contributions of still higher order in o and are therefore negligible. 

Following Caflisch et aZ. (1985), we now pass to the continuum limit. We consider 
N + 00 in such a way that a continuous droplet number density per unit volume n(x) 
can be defined in the limit with the property 

N 

C + lv d3x' n(x'). 
a=l 

(4.15) 

Denoting by an overbar the averaged fields resulting from this operation, we then 
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re-write (4.10) as 
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F(x) = s, GS d3x’ + d3x’ n(x’) {GI(’)( Y , x’) - VG [I(”( Y , x’) - Z(3)( Y , x’)]} . 
(4.16) 
\ - - I  

Since, in our limit, the drop volume fraction tends to zero, the field F may be 
considered to be defined over the whole space. The substitution of S for s in the 
volume integral presupposes that the latter quantity is smoothly varying. More 
precisely, as in the specific cases that occur below, suppose that in the neighbourhood 
of each droplet 

s - s - O(ijir-j), (4.17) 

If we break up the volume integral into a part exterior and a part interior to the guard 
spheres, the contribution to the final result arising from the ‘near-field’ behaviour in 
the latter is then of the order of N6’a3-j. As mentioned before, in the continuum 
limit, N = O ( P 2 ) .  Hence, by (4.3), we deduce that the substitution of 3 for s is valid 
as 6 -+ 0 provided that 

i - 2 + p(3 - j )  > 0, (4.18) 

with p as in (4.3). It will be necessary to check this condition for each one of our 
equations. 

Since the droplets are only present in a finite volume, n is zero at infinity and one 
can carry out an integration by parts to find 

T(x) = LGSd’x’ + ld3x’G(x-x’ )  { n ( x ’ ) l ( ’ ) ( Y , x ’ )  

+ V *  [n(x‘) (Z(*)(Y,x’) -Z(’)(Y,x’))]}. (4.19) 

At this point application of the Laplacian V2 and use of (4.6) yields the averaged 
equation satisfied by F, 

v2T = s + n ( x ) I ( ’ ) ( Y , x )  + v {n(x)[z(2)(Y,x) - z ( ~ ’ ( Y , , x ) ~ } .  (4.20) 

This result will be used repeatedly in $6. Note that the dimensionless droplet number 
density n appearing here equals the dimensional one divided by A3. 

The case of particles with a distribution of radii (but still such that the present 
scaling applies) may be treated by a slight modification of the continuum limit rule 
(4.15), namely 

(4.21) 

where n(x’,a) is now the particle number density per unit radius increment and 
the integration over a is carried out over the range of particle radii. With this 
generalization, the averaged equation (4.20) takes the form 

da n(x, a) I“’( Y , x, a)+V- da n(x, u ) [ Z ( ~ ) (  Y ,  x, u ) - Z ( ~ ) (  Y , x, a)] . (4.22) 

For simplicity, we will however limit ourselves to the monodisperse case (4.20) in 
what follows. Rubinstein (1986) presents a formulation capable of dealing with a 
wide distribution of drop radii. 
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5. The local problem 
We now obtain a solution of the local problem that will enable us to calculate 

explicit expressions for the integrals I(') appearing in the averaged equations (4.20). 
The equations to be solved are (3.13), (3.21), and (3.27) subject to the boundary 
conditions of matching with the averaged fields at large distances from the generic 
drop considered. It is this condition - as opposed to matching with the 'bare' incident 
fields - that characterizes the approach of Foldy (1945) to this type of problems. This 
step introduces a coupling with the other inhomogeneities. 

As usual with matching, the relevant values of the outer fields are those obtained in 
the inner limit. In the present problem these coincide with the values assumed at the 
centre xa of the generic droplet. In this section all quantities are made dimensionless 
according to the local scaling. However, we omit any specific indication of this fact 
for simplicity of writing. 

A difficulty that arises is that we are concerned with a transitional situation 
between continuum and free-molecular flow near the drops so that some of the usual 
continuum relations are not applicable. However, it will be found in the next section 
that the local solution influences the effective equations chiefly through the mean 
drag and evaporation rate of the drops for which empirical information is available. 
Additional properties of the local solution are only required to estimate the order 
of magnitude of terms that are neglected. Since the local flow is characterized by 
a Knudsen number of order unity, rather than large, one does not expect order-of- 
magnitude discrepancies between the real local fields and those obtained from the 
continuum equations. Hence, the latter can safely be used for estimation purposes. 
This approach can also be justified by recalling a standard approximation in the 
finite-Kn-regime (see e.g. Gyarmathy 1982), in which the flow field is divided into two 
zones. Molecular effects are accounted for up to a distance of about one mean free 
path from the drop, while the usual continuum relations are used further away. It will 
be recalled that, in the present application, the inner domain extends from the drop 
all the way to a distance of order Q >> 6. We then deduce that the usual continuum 
laws are approximately valid over most of the inner domain and, in particular, in the 
matching region. 

In order to find the microscopic vapour velocity field it is expedient to use the 
drop's rest frame and to set, as in (3.33), 

u'Eu-u=V~'+VXA', (5.1) 

where u is the drop velocity. At large distance from the drop, u must match the outer 
field a(xa, t )  and therefore 

It may be recalled that, according to the local scaling analysis of $3, time does not 
enter explicitly in the local momentum equation and this variable should therefore 
be considered as a parameter. A suitable choice for 4' is 

u ' + S S ( X a , t ) - #  = u.  ( 5 4  

where r = x - 9, r = IrI, and &I is the drop evaporation rate. It will be observed 
that V24' = 0 as required by (3.13). 

Following the argument given in Landau & Lifshitz (1959, section 20) we note that 
A' is an axial vector that can only depend on r ,  U, and VT(x", t ) .  The last quantity 
is introduced because the flow field may in general depend on nonuniformities in 
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the evaporation rate over the drop’s surface, which can be induced by temperature 
gradients in the far-field temperatures. The reason not to include higher-order 
derivatives of r is that, by dimensional reasoning, such terms would be smaller 
by some power of a / A  = 6 and therefore negligible to the present order. Since 
A’ must depend linearly on U and VT, as in Landau & Lifshitz we are led to 
A’ = V x [F(r)U + G(r)Vq.  However, U and VT are due to the same acoustic wave 
and therefore, at least locally near the drop, they must be parallel so that, without 
loss of generality, we may write 

A’ = V x Lf(r)U] , (5.4) 

just as in the non-evaporating case. The reasoning of Landau & Lifshitz can then be 
followed without further modification and leads to 

3r B 
4A r 

f =  -+ - ,  

where A and B are constants, from which 

where e, = r / r .  The associated pressure field is 

and the vorticity 
3 

2Ar2 
u) = -er x U .  

(5.5) 

The constant A is directly related to the (dimensionless) drag force, FD, on the 
drop (Landau & Lifshitz 1959), 

671 
A 

F D  = - U .  (5.9) 

When continuum theory applies, the no-slip condition is satisfied, and there is no 
phase change, A = 1 and (5.9) is just the Stokes drag law. Several expressions have 
been proposed to correct this result when the Knudsen number is not negligible (see 
e.g. Millikan 1923; Schaaf & Chambre 1961; Gyarmathy 1982; Cercignani 1988). 
Gyarmathy favours the form 

CD = G (5.10) 

where CD is the drag coefficient, equal to 2 4 / R e ~  in ordinary Stokes flow, the 
superscript c denotes the continuum-theory value, and BF = 1.48. Upon using (5.9) 
in this relation, one finds 

1 + (C$ReD/8BF)Kn ’ 

l /Ac 
- 

1 
A 1 + 2.02(Kn/AC) * 
_ -  (5.11) 

We cannot set Ac = 1 here because, as will be shown shortly, phase change affects 
the value of A even in the absence of slip. 

When either saturation or the Hertz-Knudsen relation (2.10) is imposed, it is 
evident from (5.6) and (5.7) that only an isotropic term and a term proportional to 
U - e, can appear in the expression for the vapour temperature at the drop surface 
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and we therefore write 

TI,=, = T + O o + @ l U . e , .  (5.12) 
According to the liquid energy equation (3.28), the temperature field in the liquid is 
harmonic and, since it must reduce to (5.12) at the surface according to (2.9), it must 
have the form 

TL = T+ 00 + @ ~ U * V .  (5.13) 
A corresponding deduction for the vapour temperature is not legitimate because 
Fourier’s law breaks down near the drop and the energy equation in the form (3.27) 
is not applicable. Empirical expressions for the heat flux Qo averaged over the surface 
are however available, typically in the form 

- 

where is the surface-averaged temperature and q(Kn) + 1 for 
expression similar to (5.10) given by Gyarmathy (1982, equation 
= 1.4, 

K n  
4 = 1+1.462- P r  

(5.14) 

K n  + 0. From an 
123) we find, for y 

(5.15) 

Since, as is clear from (5.12), 
of Qo from (5.14): 

- T = 00, the constant 00 can be expressed in terms 

4n 

4 
Qo = - 0 0 .  (5.16) 

From (5.6), (5.12), and the Hertz-Knudsen relation (2.10) we readily find 

. (5.17) 
H’ 3 

H @ o = P - H T + - M ,  H01 = H ’  1--+22B -- 
47T ( ;A ) 2ARe 

We write the heat flux at the drop’s surface in the following form suggested by the 
need to satisfy the conservation of energy condition (3.14) with TL given by (5.13): 

q - n  = -Qo+Q1U-e , .  (5.18) 
1 

471 
Then, from the relation (3.14) between the evaporative flux and the energy balance 
at the interface, we find 

(5.19) 
3 

2A -A(QI +K01) = 1 - - + 2 B .  -AQo = M ,  

The dimensionless K appearing here is defined in (3.15). On the basis of the Clausius- 
Clapeyron relation (3.29) one can define a saturation temperature by 

- - 
T,, = 

H 
(5.20) 

From the previous relations one then readily finds 

(T-Tsa,) . (5.21) 
4n 4nA 

(T - Tsat) , M = 
4 + H ’ / H A  q + H ’ / H A  Q o  = - 

The previous results do not constitute a complete solution of the problem but 
are sufficient for the present purposes. To go beyond them one would require a 
further relation between Q1 and 01, with the aid of which the constant B would be 
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determined from (5.17), (5.19). In principle this step requires an analysis of the local 
problem on the basis of kinetic theory. Recent progress in this direction is a paper by 
Sone, Takata & Wakabayashi (1994), who however assumed a uniform temperature 
over the surface of the drop. 

In order to calculate the continuum-theory value Ac appearing in (5.11), and for 
the purpose of demonstrating the nature of a full solution to the problem, we now 
complete the solution assuming the validity of Fourier’s law and no tangential slip at 
the drop surface (see also Duraiswami 1990). From the former condition we readily 
find 

QI = 201, (5.22) 

while the latter one gives 
2 

- ‘ + B = l .  
4Ac 

(5.23) 

Upon using these relations to express 0 1  and B in the second of (5.17) and of (5.19) 
one finds 

_ -  1 - 2 Re [H + H’A(K + 2)] 
AC 2ReH+A(K+2)(1+2ReH’)’  

(5.24) 

-- - - 2ReH+A(K+2)(1+2ReH’), 
Qi 

When the saturation condition at the drop surface is applicable, H’ = 0 and the latter 
result becomes 

( K  + 2 ) .  
A 

2Re €€ 
AC = I + -  

In dimensional variables this relation can be expressed in the form 

A c = l + ( : )  2 

(5.25) 

(5.26) 

where the characteristic length hl only depends on the physical properties of the fluid 
and is given by 

(5.27) 

A graph of hl in pm versus temperature for saturated water and water vapour is 
shown in figure 2 to give an idea of the magnitude of the predicted deviation from 
the standard Stokes drag law. Depending on the drop radius, the correction can 
be significant, particularly at lower temperatures where the density is low and the 
evaporation velocities therefore larger (note the strong sensitivity of the parameter A 
to the vapour density). An alternative way to examine this point is to rewrite (5.25) 
explicitly bringing out its dependence on the Knudsen number, 

A ‘ =  1+Kn2 [g(y)2(%+2)]. (5.28) 

The quantity in square brackets is also plotted as a function of temperature in the 
case of water in figure 3. Again we conclude that, when K n  -1, the effect of phase 
change on the drag may not be negligible. 
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6. Averaged equations 
We can now obtain averaged equations by substituting the local results of the 

preceding section into the integrals (4.14) that arise in the application of the procedure 
outlined in section 4. In so doing a clearer statement of the domain of validity of the 
final result will be derived and several aspects of the technique will be elucidated. We 
give a detailed derivation for the case of the equation of continuity. The procedure 
is similar for the other effective equations. All quantities are made dimensionless 
according to the macroscopic scaling of section 3.1, but asterisks are omitted for 
simplicity of writing. 

6.1. Continuity 

We start from the continuity equation (3.35). With the notation of 54 we thus have 
s = -(l/y)ap/at and Y = q5 - ( e / P r ) T .  

In outer variables the results (5.3) and (5.7) of the previous section are, after 
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(53 - v )  'Y, 
3d2 

2A Re r3 
p = p -  

(6.2) 

It should be recalled that here ii is evaluated at the centre of the particle and is 
therefore independent of r .  From (6.2) we then find 

6 2  

4nr 
4 = j j . r - - M .  

The integral I(') is therefore 

6. n . Vy+(xa + y )  dS" = S 2 M ,  

since the first term of (6.3) gives a vanishing contribution. Here M is given by (5.21). 
Proceeding in a similar fashion we find for Z(3) 

(6.5) 

with an identical result for p2) .  The two contributions Z(2) and Z(3) happen therefore 
to balance in this case. Were this accidental cancellation not to occur, one would 
need to require that this contribution be smaller than the O(S2) one of Z(') for the 
result to be independent of the matching length scale 0. Again then we would find 
for CT the order estimate (4.3) of $4. 

The integral for the temperature field is 

6. n * V, T dS" . (6.6) 

This integral is proportional to the total heat crossing the guard sphere. By conser- 
vation of energy, this must equal the total heat exchanged by the droplet with its 
surroundings and therefore we conclude that 

l z n - V y T d S "  = -Qo6. (6.7) 

In order to show that the other integrals give negligible contributions, we note that 
(3.27) is applicable at some distance from the drop so that, in the matching region, 
the inner temperature field must have the form 

c \  k+l  

where the @Lm are constants and the Y r  spherical harmonics. With this expression, 
for the integral Z(3) we find 

c 1 c 

nTdSa = S 2  01,] nYFdS2, 
m=- 1 

where we have set dSa = 02dR with S2 the solid angle. A similar expression is found 
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for Z('). Since these integrals need to be multiplied by e (because for this calculation 
Y = 4 - ( e / P r ) T ) ,  their contribution vanishes as 6 + 0. 

The final step is to check the order of the source term ap/at. From (6.1) we have 

a t  at 
(6.10) 

where Re is O(1). With the previous estimate (4.3) we see that the condition (4.18) is 
satisfied so that the source term can be averaged directly. 

Upon insertion of these results into the general form (4.10) we then find 

(6.11) 

The second term in the left-hand side is negligible as 6 + 0, but the fraction e/6 in 
the right-hand side is 0(1) in the limit we consider. It is therefore clear from this 
result that, for consistency of the procedure employed in its derivation, an upper limit 
on the drop number is 

Nd2 = 0(1), (6.12) 
as mentioned before in $4. 

Having established this relation, we can now use the general result (4.20) to cast 
the previous equation in differential form to find, by the first of (5.19) relating Qo and 
M, 

(6.13) 

In this and the previous equations &f should be viewed as the average evaporation 
rate per drop. An expression for this quantity is given by (5.21). 

6.2. Energy 
The calculation is very similar to that for the energy equation (3.34). The estimate of 
the source terms proceeds as before, and the result (6.7) can be used directly to find 

M .  
n6e 

at y at  A P r  
_--- - - -- a r  ? - l a p  

(6.14) 

It may be noted that the validity of this conclusion depends on the assumption 
that the difference between dT/at and i?T/at gives a negligible contribution to the 
volume integral. This can readily be checked for T given by (6.8), which begins to be 
applicable a few mean free paths away from the drop surface. While we do not have 
an expression for the temperature near the surface, we do not expect this region to 
invalidate this estimate. In the first place, as noted before, the (dimensionless) mean 
free path is O(6) and, since 6 << (r, most of the contribution to the integral comes 
from the region where (6.8) holds. Secondly, the. difference between (6.8) and the 
actual temperature field is probably small anyway (see e.g. Landau & Lifshitz 1981, 
section 14). 

Upon using the (linearized) equation of state of the vapour and (6.14) in the 
right-hand side of (6.13), the averaged continuity equation can be cast in the expected 
form 

2 + v * i j  = nij*n;f, (6.15) 
at 

with M from (5.21). 
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6.3. The disperse-phase equations 
Before considering the averaged momentum equation we need to introduce the 
average velocity of the disperse phase. With the expression (5.9) for the drag force, 
the (dimensionless) equation of motion of the generic drop CI is given by 

(6.16) 

In order to retain as much physics as possible in this relation we assume that, formally, 
0 ( p o / p L )  = 0(6) ,  so that the fraction in parentheses is of order 1. It may be recalled 
that p 0 / p L  had already been assumed small in order to approximate the interface 
velocity by the drop velocity just before (3.14). 

Following Caflisch et al. (1985), as N -P 00, we define the continuum limit ij(x,t) 
of the quantity va defined at the N positions xu occupied by the droplets by 

. N  
1 
- C [ v a  -iT(x,t)]2 --+ 0. 

a=l 
N 

On this basis, from (6.16), we may write 

9 POIPL = -  as - 
at 2 A R e  (7) 

(6.17) 

(6.18) 

Although not necessary for the closure of the system, we may also give an equation 
for the average temperature field in the droplet phase. To this end we note that, 
as is immediate from (5.13), the mean droplet temperature equals T + Oo. Upon 
differentiation with respect to time and use of the relation (5.16) between 00 and Qo 
we then have 

aT, - aT 4 ahif 
at at 4 n ~  at * 

(6.19) 

Note that the local problem depends on time parametrically through the matching 
conditions, although not dynamically through its governing differential equations. 

6.4. Momentum 
For the momentum balance we have the two equations (3.36) and (3.37). For the 
first one we cannot apply directly (4.20) because the right-hand side does not give a 
negligible contribution in the neighbourhood of the drops. Hence we start from the 
Green's function form, (4.5), which, in this case, is 

at 

N 

a=l 

GVV : r d ' x ' + x l z  

N 

(pVG - GVp) n dS". 
a=1 

Upon a twofold integration by parts of the first term we find 

at 

N 

z : V V G d 3 x ' + x  .ndS" 
a=l 

(6.20) 

N 

VG. (pn - ez -n)dS" + 
a=l sl" 

1 Gn-(Vp - cV-r)dS'. (6.21) 
a=l 
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In terms of z the momentum equation (3.21) is just 

Vp-EV'Z = 0, (6.22) 

which shows that the terms in the last summation all vanish. (Recall that, since the 
surfaces S' are in the matching region far from the drop, the ordinary continuum 
equations are applicable there.) The term VG can be removed from the integrands in 
the next to the last summation by a Taylor series expansion as in (4.9). To leading 
order, the remaining term is just the total vapour force on the spherical surface of 
radius 6. Since there are no momentum sources inside this sphere, and since inertial 
effects are negligible in the inner region, this force must equal the drag on the enclosed 
particle given in dimensionless form by (5.9). Hence 

1"" = l u ( p n  - ez n) dS" = - -St. (& - u ) ,  (6.23) 
671 
A 

so that 
N N 

- + p  a4 =  EL^ : W G d 3 x ' + x /  ($ VG-GV- ~ n d S " + ~ F " * V G ( + - x " ) .  
a t  

(6.24) 
S' at  

At this point the procedure leading from (4.5) to (4.20) can be followed to find, as 
f + 0, 

(6.25) 

with error terms as before. 

(5.8) for the local vorticity is 
Lastly we consider the vorticity equation (3.37). In outer coordinates the result 

(6.26) 

The source term in this case is s = (l/e)aw/at and, since E = 0(6), the criterion (4.18) 
is not satisfied and this term cannot be averaged directly. However 

/ 2 G d ' x '  = 

and the inner momentum equations show the last term to vanish. The source term in 
the first integral now satisfies the criterion (4.18) and can be averaged. 

Upon using the explicit expression (6.26), it is found that the integral I ( ' )  vanishes 
while 

(6.28) 

with error terms as before. Collecting these contributions the final result for the 
averaged vorticity equation is then, to leading order, 

671 
A 

z(2) - z(3)  = la [y(n*V,)o-no]  dS" = - - ~ E ( u - & ) ,  

- = -v x --ndc(E-i?) . 
ao 
at [: 1 (6.29) 

The two equations obtained here specify the divergence and the curl of the velocity 
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field i& It is not difficult to prove (Duraiswami 1990) with the help of suitable gauge 
transformations and the condition of vanishing at infinity (which has already been 
extensively used, e.g. in writing Green's identity) that they are equivalent to 

au 67c 
at A 
- + Q = ---ride@ - V), (6.30) 

as expected. An expression for the drag correction A is given in (5.11) with Ac given 
in (5.24). 

7. The problem for multi-component fogs 
We now consider the effects of diffusion on the average equations derived in the 

previous section. The differences with the one-component case are minor and an 
abbreviated treatment will be sufficient. 

The total density of the gaseous mixture is 

P = P g  + PU' 
where the subscripts g and o refer to the incondensible gas and the vapour respectively. 
The local composition of the gaseous mixture is specified in terms of the vapour mass 
concentration c defined by 

(7.1) 

P u  c = -  
P '  

We shall neglect the solubility of the incondensible gas in the liquid phase so that 
the entire mass flux crossing the interface from the vapour side is due to the vapour 
component alone. 

With 

c = co(l+nC*) (7.3) 

= pa - T, - W C ~ ,  (7-4) 

(cf. (3.3)), the dimensionless linearized equation of state of the mixture is 

where 
CO(Wu - Bg) 

Buco + 4e,(l - co)' 
W =  (7.5) 

with Bg the specific gas constant (cf. (2.8)). 

For the linearized dimensionless energy equation we find 
As mentioned in 92, the continuity and momentum equations remain unchanged. 

a z  9 - 1 ap, € 2  

at. 9 at.  P r  
-V. Ta, ----= 

which is formally identical to (3.9) with the replacement of y by 9 defined by 

where the C, are the specific heats at constant volume. The linearized diffusion 
equation in outer variables is 

ac. E _ -  - - VIC,, 
at. sc 

where Sc  = p/p@ is the Schmidt number. Upon expressing the velocity in terms of 
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a scalar and vector potential as in (3.33), use of the equation of state (7.4), and of the 
heat and mass diffusion equations (7.6) and (7.8), the equation of continuity may be 
written 

V: (+* - E T. - -c.) e = 1 a p ,  
r s c  9 at,’ (7.9) 

which is very similar to the single-component case (3.35). 
Upon performing a local scaling analysis parallel to that carried out in 93, since the 

Schmidt number is of order one for gases, one finds the same limits and analogous 
equations for the conservation of mass, momentum, and energy. For the diffusion 
equation, in the scaling e - 6, the result is 

A 2  v c.  = 0, (7.10) 

although, as before in the case of (3.27), the presence of non-negligible kinetic effects 
necessitates some correction in the neighbourhood of the drop. 

At the interface we apply the equation of conservation of the total mass (2.5) and of 
the total energy (2.6) as before. With the neglect of the solubility of the incondensible 
gas in the liquid forming the drop, the total mass flux of the incondensible gas at the 
surface of the drops must vanish from which we have 

(u. - v.)  * n = r n * j . ,  (7.11) 

where 

and 

is the dimensionless diffusion mass flux. When Fick‘s law applies we have 

j .  = -$c, 

(7.12) 

(7.13) 

(7.14) 

Analogously to the parameter A, r also is negligibly small unless O(6)  = O(e)  or 
O(6) < O(e),  i.e. except when the droplets are of the order of the mean free path or 
smaller. 

The saturation relation corresponding to (3.29) is now 

with H as given before in (3.30) and 

(7.15) 

(7.16) 

The analogue of the Hertz-Knudsen relation (2.10) is 

p .  = HT, - d c .  - HL(u. - u.) n ,  (7.17) 

with 

and contains the saturation relation (7.15) as a special case. 
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7.1. The local problem for diflusion 
We now pass to quantities made dimensionless according to the local scaling of $3.2 
but, as before, omit any specific indication of this fact. 

The hydrodynamic fields are identical to those found previously. Equations (5.12) 
for the drop surface temperature, (5.13) for the liquid temperature, and (5.14) for the 
surface-averaged heat flux also hold with the same expression (5.15) for the correction 
q to the continuum heat transfer coefficient. As a consequence, we again find the 
relation (5.16) between Qo and 0 0 .  We write the surface vapour concentration in the 
form, reminiscent of (5.12), 

Clr=l  = E + C o + C , U * n ,  (7.19) 

and the diffusion mass flux at the surface as 

JO j*nlr=l = - + J 1 U * n ,  
4 A  

(7.20) 

analogous to (5.18). From (5.6) and (7.11) we then find 

2A 
1 

Jo = - M ,  J1 = r (7.21) 

The Hertz-Knudsen relation (7.17) now requires, in place of (5.17), 

where 

(7.23) 

is the saturation temperature. 
Again according to Gyarmathy (1982), diffusional mass transfer rates from the 

drop at finite Knudsen numbers may be expressed in a form similar to (5.16), namely 

1 - 
T s a t  = (p + dZ) 

where 
K n  
s c  

d(Kn) = 1 + 2.785-. 

From (7.21) we then have 
. 4 A r  

M =  -Co 
d 

(7.24) 

(7.25) 

(7.26) 

Upon substitution into the first of (7.22) and use of (5.16) and (5.19) we then find 

These results extend (5.21) to gas-vapour mixtures. 
If Fick's law (7.14) applies, the local diffusion problem can be solved completely. 

This step is actually needed to enable us to calculate the continuum-value A" of 
the drag constant A appearing in the drag correction (5.11). The calculation is very 
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similar to that at the end of 95 and one finds 

(7.28) 
A(K + 2 )  

2ReH + A(K + 2 )  (1 + 2 ReHh + R e d / r )  ' 
- 1 -  

1 
A" 
- -  

Furthermore, from the second of (7.22), we have in this case 

(7.29) 

7.2. Effective equations 
The effective equations are readily derived, Like the case of the previous section, the 
dimensionless equation of continuity (6.13) acquires an additional contribution due 
to the Vlc. in the left-hand side of (7.9) and is 

The energy equation is formally identical to (6.14). The diffusion equation is 

a? n6e 
at rsc = -  M .  - 

(7.30) 

(7.31) 

As in the pure-vapour case of the previous section, upon combining these equations 
one can rewrite the equation of continuity in the form (6.15). Here &f is given by the 
first of (7.27). 

8. Summary and discussion 
We have studied the problem of the propagation of linear pressure waves in a fog 

consisting of droplets suspended in a mixture of an incondensible gas and their own 
vapour. The scaling analysis of $3 shows that, for the present weak waves, phase 
change effects are only important when the Knudsen number K n  is of order 1, a 
condition that can be expressed as 

P a -  
(PoPo)"2 , 

or smaller. Here PO, PO, and ,LL are the undisturbed gas mixture pressure, density, and 
viscosity and a is the drop radius. This is the case that has been treated in detail for 
equal sized droplets. The extension to a droplet size distribution has been indicated 
at the end of $4. The deviation of the governing equations from the standard form 
applicable in the continuum limit K n  + 0 has been accounted for by the use of 
approximate relations. The derivation, which is based on the smallness of the ratio 
6 = a/L, where L is the typical wavelength of the perturbation, has been carried out 
in the time domain. The effective equations that we have derived are valid in the 
dilute limit where the droplet volume fraction is of the order of 6. 

The dimensionless form of the gas-phase averaged momentum equation is given 
in (6.30). Upon returning to dimensional variables using (3 .3) ,  ( 3 . 9 ,  (3 .11 ) ,  and 
n. = m/A3, we find 

Here and in the following the field quantities are to be interpreted in an average sense. 
The time derivative is partial rather than convective owing to linearization. The index 
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0 indicates equilibrium values. The droplet number per unit volume (not necessarily 
spatially uniform) is denoted by no, p is the pressure, and u, o are the gas and droplet 
velocity fields respectively. The drag correction A, accounting for the modification of 
the stress at the particle surface due to free-molecular and phase change effects, is 
given by (5.11) and (5.24) or (7.28). 

A term V2u of the Brinkman type is absent from (8.2) because it is negligible in 
the present scaling in which the fundamental macroscopic length is the wavelength 
of the pressure perturbation. 

The average equation of continuity is 

where 
corresponding dimensionless quantity &I* by 

is the dimensional average evaporative mass flux per drop related to the 

M 
poMCa2 ' M ,  = (8.4) 

as follows from the non-dimensionalization of $3. 
Similarly, with (3.5), (3.1 l), and (3.16), the dimensionless energy equation (6.14) is 

aT a p  
at at 

poC - - - = -noLn;l, (8.5) 

where C, is the constant-pressure specific heat of the gas-vapour mixture and L the 
latent heat, and the diffusion equation (7.31) is 

Here c is the average vapour mass fraction and pg0 the undisturbed density of the 
incondensible gas. 

The mean drop evaporation rate is given in dimensionless form in (7.27). Upon 
using (8.4) and the definitions (3.16), (3.30), (7.12), (7.16), and (7.18), the dimensional 
form of this result may be written 

(8.7) 

M = - [  . 4naK 
L 

where T,,, is the saturation temperature corresponding to p ,  c (see (7.15)), CI is the 
accommodation coefficient (see (2.10)), the length h2 is defined by 

and the quantity @ by 

If the terms in the first square brackets in (8.7) were replaced by 1, this expression 
for &I would take on the form expected if the latent heat were provided by steady 
conduction over a distance a. For water h2 has the value 1 . 5 ~ 1 0 - ~  pm at 20 "C, has a 
mimimum of 1 . 5 ~ 1 0 - ~  pm around 280 "C, and then increases very close to the critical 
point. This term is therefore unlikely to be important under normal circumstances. 
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For the quantity @, assuming the Schmidt number to be of order 1, we have @ w 
1 . 2 3 ~ 1 0 ~ ~  and 0.28 at 20 "C and 300 "C, respectively. Depending on the vapour 
concentration, this term may therefore have a noticeable effect. 

The dimensional form of the momentum equation (6.18) of the disperse phase is 

- 9p (u-ii). av _ -  
at 2 A a2pl 

(8.10) 

The corresponding energy equation is not necessary to close the system but is gven 
in (6.19) for completeness. 

The physical meaning of the effective equations derived is transparent. The vapour 
equation of conservation of mass acquires a source term given by the product of the 
net evaporation rate per drop multiplied by the drop number density. The energy 
needed to drive this source appears as a sink in the vapour energy equation. The 
equation for the concentration c is really a mass conservation equation for the vapour, 
and therefore it acquires the same source term suitably modified to appear as a source 
of mass fraction rather than of mass. 

Even though the method that we have followed does not necessarily lead to linear 
equations (see e.g. Caflisch et al. 1985), the mathematical model that we have obtained 
is linear. This is due to the usually large value of the latent heat that limits the phase 
change rate at the drop surface. Nonlinear effects would however be important near 
the critical point as well as for stronger waves. 

As noted at the beginning, the preceding system of average equations is valid 
when the drop radius is comparable with the molecular mean free path, see (8.1). 
For smaller droplets, phase change effects are even stronger than those considered 
here, but deviations from the continuum description are also greater and the model 
invalid. This case must be analysed on the basis of equations rooted in kinetic 
theory. For droplets larger than (8.1), on the other hand, the usual continuum 
relations are applicable, but the coupling between the phases is mainly through 
the interchange of momentum and therefore not different from that occurring in a 
dusty gas with no phase change. We thus conclude that the peculiarities of phase 
change need only be considered when the continuum flow model starts to break 
down. 

It may be of some interest to compare (8.2), (8.3), (8.5) and (8.10) with other 
models in the literature. As a typical example, which contains most of the other 
ones proposed, we take that of Gumerov et al. (1988). After some adjustments to 
the notation to facilitate comparison with the present results, the vapour continuity 
equation of that model may be written 

where a, is the vapour volume fraction. The vapour momentum equation is 

au a p  
at ax "uoP0- + - = -nof, 

where f is the force on the droplets, and the energy equation is 

(8.12) 

(8.13) 

where qlU is the heat flux from the vapour to the drop surface. Since, in the limit 
considered here, a, w 1, the left-hand sides of these equations coincide with those 
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of (8.3), (8.2), and (8.5). Differences arise however when the explicit expressions 
of the inter-phase coupling terms M ,  f, and qln are examined. While, on the one 
hand, the expressions gven by Gumerov et al. (1988) contain a large number of 
effects that our scaling analysis has proven to be small for linear waves, they do 
not include our finite-Kn corrections. Furthermore, the scaling analysis of $3 shows 
that some of the effects of Gumerov et a!. (e.g. added mass force, sensible heat 
storage in the vapour, and others), cannot be significant unless a - 1, the drop 
volume fraction is not small, or nonlinearity is important. In this sense, the equations 
of Gumerov et al., while based on a penetrating physical intuition, may be said 
to be inconsistent as they include some effects but omit others of a comparable 
magnitude. 

Our equations have been derived rather than postulated. They are the simplest 
mathematical model containing all - and only - the physical effects that contribute in 
the limit of weak waves, far from the critical point, and for droplet radii comparable 
with the mean free path. In this sense, the most significant results of the paper are 
the explicit form of the corrections to the drag and mass flux terms. In particular, it 
is noteworthy that these terms are strongly affected by the finite-Kn corrections to 
the droplet heat flux and drag and by the vapour pressure-temperature relation at 
the interface. This remark suggests the possibility of exploring experimentally these 
problems uncluttered by the myriad of other effects that a priori may be expected to 
play a role. Conversely, our analysis indicates that the experimental investigation of 
effects that we have shown to be negligible in the case of weak waves would require 
data reduction on the basis of a more complex, nonlinear, non-dilute theoretical 
model. 

As a final point, we have set out in $4 the details of a mathematical technique that 
appears widely applicable to the systematic derivation of effective equations for dilute 
multi-phase disperse flows. The strong aspect of this technique is its fundamental 
simplicity. On the negative side, it must be recognized that it does not appear to be 
readily susceptible of extension to larger volume fractions, although nonlinearity per 
se would not be an obstacle. 

Thanks are due to a referee for many suggestions that led to a substantial improve- 
ment of this work and to Mr. M. Watanabe for help with the figures. This study has 
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